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Abstract

Elements of vector mathematics and piecewise linear analysis are used to delineate and
mathematically formalize each step in the process by which the TimeWave Zero (TWZ)
384 number data set is generated. This development begins with the King Wen
hexagram sequence and proceeds to the final 384 number data set, using standard
mathematical procedures and operations. The process is clarified and streamlined by the
introduction of vector notation and operations, which also preserves the notion of wave
"directed" flow, described by McKenna.

This 384 number data set serves as the input data file for the TWZ software, which
performs a "fractal" transform on the input data in order to produce the output
TimeWave viewed on the computer screen as an x-y graph of Novelty. The basis for this
data set is the first order of difference (FOD) of the King Wen sequence, defined as the
number of lines that change as one moves from hexagram to hexagram, beginning at
hexagram 1 and proceeding to hexagram 64. This first order of difference (FOD) number
set and its derivatives are produced by a series of clearly defined mathematical
operations, which are all described in detail.

Once this revised 384 number data set has been calculated, it is used as input to the
TWZ software in order to generate revised TimeWaves that may be compared with the
original standard TimeWaves. Several random number sets are also generated and used
similarly to produce random TimeWauves for comparison. Fourier transform operations
are performed on each of the 384 number data sets, in order to examine wave noise and
information content. Correlation is used to determine the degree of interdependence
between the two data sets, and between the data and random number sets.

The results of the mathematical formalization and subsequent comparison analysis show
that the revised data set produces a TimeWave that appears to reflect historical process
with greater accuracy than the standard TimeWave. This difference is likely due to the
fact that the standard data set produces a distorted TimeWave, as the result of imbedded
mathematical errors that increase the noise level in the wave. Comparisons of the
standard and revised data sets and TimeWaves, show a generally high degree of
correlation, inferring that the standard wave retains much of the information content of
the revised wave, despite its distortion. This TimeWave information content, or the wave
signal-to-noise ratio (s/n), is improved by using the revised data set, which serves to
correct the noise distortion introduced by the standard wave.
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Introduction

TimeWave Zero! (TWZ) is a mathematical and graphical expression of the Novelty Theory
advanced by Terence McKenna, and implemented by computer software called Time
Surferd for Macintosh, and Time Explorer for DOS operating systems. It is based on a
specific mathematical relationship exhibited by the King Wen sequence of the I-Ching —
1.e. the number of lines that change as one moves from one hexagram to the next,
beginning at hexagram 1 and proceeding to hexagram 64. This number set, called the
First Order of Difference (FOD), was first expressed and expanded by McKenna? and
others, into the TimeWave that is produced by the TWZ software. The philosophical
nature and theoretical basis of the TimeWave, have been reported extensively elsewhere!
and will not be discussed in detail here. However, the general thrust of Novelty Theory,
is that information about some fundamental natural process is encoded in the I-Ching in
general, and the FOD number set in particular. This process is thought to express itself
in nature and the cosmos, as the ongoing creation and conservation of increasingly
higher ordered states of complex form. The TimeWave is then viewed as expressing this
process as a kind of fractal map of temporal resonance in nature, or as an expression of
the ebb and flow of an organizing principle called Novelty.

The conversion of this FOD number set into the TimeWave (viewed on the TWZ
computer screen as a graph of the Novelty process), involves the performance of a series
of mathematical procedures and operations on this number set. The TimeWave is
actually produced in two distinct and mathematically different phases. The first phase
includes the creation of a simple bi-directional wave using the FOD number set. This
wave 1s then expanded into linear, trigramatic, and hexagramatic bi-directional waves
that are subsequently combined to form the tri-level complex wave, or 384 number data
set. The second phase is performed by the TWZ software itself, which includes an
expansion, or “fractal transform” of the 384 number data set (input file to TWZ) to
produce the TimeWave viewed on the computer screen. Phase I uses the mathematics of
piecewise linear analysis to generate the 384 number data set from the FOD number set,
whereas Phase II uses infinite series expansions, that are slightly more complex, to
convert the Phase I data set into the final TimeWave. The formalization and comparison
work described in this report is concerned only with the Phase I mathematics.

Until recently, the details of the genesis and development of Novelty Theory and the
TimeWave, although available to all with the will and energy to examine them, have
remained largely out of sight and out of mind for most. The primary focus has been on
the results of that development — i.e. the reflective and apparently projective
characteristics of Novelty Theory as expressed by the TimeWave, and graphed by the
TWZ software. That is, until Mathew Watkins, a British mathematician proceeded to
deconstruct the wave generating process and examine those details more closely. The
results of his investigation were reported in a paper entitled Autopsy for a Mathematical
Hallucinations, linked to the McKenna website Hyperborea as the Watkins Objection.

There were several things that Watkins found objectionable in his scathing critique of
Novelty Theory and TWZ, but there was only one significant finding that he
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substantiated in his report. He showed that one of the operational steps used in the
production of the 384 number data set, the notorious “half twist”, was not
mathematically consistent with the standard linear analysis that is implied by the
documentation in the Invisible Landscape and the Time Explorer software manual. He
pointed out the fact that the two number sets produced by first the inclusion, then the
exclusion of the half twist would be different sets resulting in different TimeWaves.
However, he didn’t quantify this difference in number sets, nor show what the resulting
impact of the final TimeWave would be. He then concluded that without some
miraculous justification for the “half twist”, his findings would prove fatal to TimeWave
Zero and Novelty Theory. This claim seemed somewhat speculative and overstated to
me, since he hadn’t actually shown what the impact of his findings on the TimeWauve
itself would be. Nonetheless, it was an important finding, so I decided to investigate the
matter for myself in order to assess the actual impact on the TimeWave and the
corresponding damage to Novelty Theory. This meant, of course, that I would have to
immerse myself in the details of the TWZ mathematical development.

Becoming familiar with the details of the mathematical development of TWZ proved to
be more of a challenge than expected, partially because the available documentation
lacked the necessary descriptive detail to faithfully reconstruct the process of TimeWave
generation. Additionally, some of the mathematical operations were described with
unconventional language that was somewhat confusing, making it more difficult to
understand what was actually being done. So in order to clarify this process of wave
generation, I proceeded to delineate and mathematically formalize each of the steps in
the process that takes one from the King Wen hexagram sequence to the final 384
number data set - Phase I of the TimeWave generating process. I felt that it was
important as well, that this formalization be done in a way that could be clearly
visualized, in order to give one a mental picture of what might actually be happening as
one proceeds through the development process. I felt that it should be more than merely
a correct, but arcane, mathematical formulation.

An important feature of the standard development process, clearly shown in all the
TimeWave Zero documentation, is that the process is expressed by piecewise linear
mathematics — meaning simply that the final 384 number data set is the result of the
expansion and combination of straight line segments. These linear segments are
bounded by integers that are derived from the FOD number set, although the actual
inclusion of the line segments establishes non-integer values in the set. Another
important and well-documented feature of the process, is the generation of the simple bi-
directional wave from the FOD number set. This bi-directional wave consists of a
forward and reverse flowing wave pair, and it is the fundamental waveform or building
block of the TimeWave generating process. These two features, a piecewise linear nature
and wave directed flow, clearly lend themselves to expression through the principles of
vector mathematics. Vector notation and operations were consequently chosen as
appropriate tools for this modeling process.

It should be noted here, that there is nothing unique or exceptional about the use of
vector mathematics. It is only one of several approaches that could have been used; but
it is one that clearly expresses the notion of wave directed flow, and one that also has the
capacity to generate straight-line segments. The fact is that only a few of the basic
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features of vectors are used here — vector addition and subtraction, and the vector
parametric equation of the straight line. However, the generation of straight-line
segments using vectors, converts the discrete function (integer values only) represented
by the FOD number set, into a continuous function in the domain bounded by the FOD
integers. This is important if the wave is to be well defined over the entire range of its
expression (i.e. the inclusion of fractional values).

This work is the formalization of the procedures already established with the standard
wave development, by McKenna, but one that removes inconsistencies and makes the
process more coherent and intelligible. It does not, in any way, make fundamental
changes in the development process, nor does it modify the underlying theory.

Generating the Simple Bi-directional Wave

(1) The Simple Forward Wave

The process by which the 384 number data set is generated begins with the King Wen
sequence of I-Ching hexagrams (a listing of which appears in the Time Explorer(
manual, pp. 58-59), which is believed to be the earliest arrangement of hexagrams.
McKenna chose to examine* the number of lines that change (yin to yang, and yang to
yin) as one moves from hexagram to hexagram, beginning at hexagram 1 and proceeding
to hexagram 64, and he called this quantity the First Order of Difference (FOD). The
FOD number set that is generated as one moves from hexagram 1 to hexagram 64
contains 63 elements; a 64th element is determined by recording the FOD as one moves
from hexagram 64 “wrapping” back to hexagram 1, thus establishing a closed system
with periodic waveform. This FOD number set can be computed mathematically by
treating each hexagram as a binary number as reported by Meyer5, but in this case I
simply recorded each number manually in DeltaGraph6 and Excel(]17 spreadsheets.

The FOD number set, which I will now call the Simple Forward Wauves, is graphed in Fig.
1 with straight line segments connecting the individual FOD data points. The x-axis of
this graph shows the hexagram transition number, where transition n is defined as the
transition from hexagram n to hexagram n+I; transition n=0 is simply an x-axis wrap of
transition 64, and is thus defined as the transition from hexagram 64 to hexagram 1.
The inclusion of the zero transition data point is a way of graphically illustrating the
“wrap-around” nature of this number set, or possibly a way of mapping an apparent 3-
dimemsional cylindrical surface onto a 2-dimensional plane. For clarity, let us define
this feature of the FOD number set:

Definition 1:

The collection of simple forward wave x, y integer pairs, or FOD number set
[Xn, Yn], form a closed loop such that the final value [64, Y(64)] "wraps" to an
initial value [0, Y(0)]; Where Y(64) = Y(0), and the waveform is periodic.

The y-axis values shown in Fig. 1 are the actual FOD transition values, integers that
would normally be shown as points along the transition axis. In Fig. 1, however, these
points are connected by straight line segments, which establishes the piecewise linear
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nature of this number set, generating non-integer values and creating a general function
that is defined at every point in its domain (all possible x values in the domain

0< x<384). Generating this function requires the acceptance of a general principle,
which will now be defined for clarity:

Definition 2:

The collection of FOD numbers is a set of integers that establish the boundary
conditions for a piecewise linear function, which is defined for all x in the domain
of the FOD set and its expansions. The domain of x is defined: 0< x< 384

This FOD function is viewed as having a forward flowing, or +x directed nature, and it is
the basic or simplest number set in the TimeWave development process. Thus it is called
the simple forward flowing wave, or just the Simple Forward Wauve.

FOD Value (no of changing lines)

Simple Forward Wave - First Order of Difference Number Set
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Figure 1

(2) The Simple Reverse Wave

In order to clarify the process of simple bi-directional wave generation, and the
production of the Simple Reverse Wave, let us first define another general principle:

Definition 3:

The Simple Forward Wave (the FOD function) has a Reverse Wave partner, and
the two are aligned with one another such that closures (nodes) occur at either end
of the properly superimposed wave pair. The proper superimposition produces
forward and reverse wave closure at the Index 1, and at Indices 62, 63, and 64
endpoints.

This is an important statement, for without it there is neither reason nor unambiguous
path for the construction of the bi-directional wave function, nor is the proper form of
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wave closure obvious. Once this principle has been established, however, it is then
possible to proceed with a step-by-step process of reverse wave, and bi-directional wave
generation. Figures 2a—2f illustrate this process of generating the Simple Reverse Wave,
followed by a closure with the Simple Forward Wave to form the Simple Bi-directional
Wave. Fig. 2a shows Step 1 in the process of Simple Reverse Wave generation — a 180°
rotation of the Simple Forward Wave about the x, y axes origin (0,0).

This rotation operation can be visualized by observing that the Simple Forward Wauve,
shown in quadrant I (upper right hand corner of Fig. 2a) is fixed relative to the x, y axes
(red lines). The axes are then spun counter-clockwise 180° around their origin
(intersection point), carrying the wave with them. The mathematical formulas for this
rotation are expressed as:

X' = xcosd + y sirf [1]
y' = —xsinf + ycod [2]
Where: X' 1s the rotated x value

y' is the rotated y value
6 Is the angle of rotation in degrees

With 180° as the rotation angle, these equations reduce to:
X'=-x+0=-X [3]

y'=-0-y=-y [4]

Froduction of Simple Bi-directional Wave from Simple Forward Wave (FOD)
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Equation [3] and [4] show that this 180° rotation operation results in a simple sign
change of the original forward wave x, y pair data set. The rotation places the
developing reverse wave in quadrant III of the graph, shown as the solid blue line-plot.
The dotted blue line-plot shows the position of the parent Simple Forward Wave.

Step 2 of the reverse wave generation process is shown in Fig. 2b, and involves the
translation of the rotated forward wave in the +x direction. This operation is expressed
by the following translation equation:

X=X +h [5]

Where: X 1s the translated value of x' of equation [3]
h is the magnitude of the translation in the +x direction

Since this translation must x-align the endpoints of the forward and reverse waves, the
magnitude of the translation, h, is +64. This positions the developing reverse wave in
quadrant IV as shown in Fig. 2b.

Production of Simple Bi-directional Wave from Simple Forward Wave (FOD)
Using a -1 Shifted Reverse Wave Closure - S5tep 2: +x Translation
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Fig. 2c shows Step 3 of the reverse wave generation process, and is defined as the +y

translation of the x-translated wave of Fig. 2b. This translation is performed so that the
forward and reverse waves will be in position to achieve closure at the Index 1 and
Indices 62, 63, 64 endpoints as specified by definition 3, once the next and final step is
performed. The translation equation for this step of the process is express as follows:
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Where:

y=y+k

y 1s the translated value of y' as expressed in equation [4]

k is the magnitude of the translation required to position the
reverse wave for proper closure with the forward wave

In this case the y positioning for proper wave closure requires a k value of +9. Fig. 2¢

shows the reverse wave position that results from this translation, and also shows that
the forward and reverse waves are offset, and have not yet achieved endpoint closure.
The next and final step is performed using a different type of mathematical operation
called the “shift”, which can be understood by using the following analogue:

Wave Value
g D W O R s Ok D O e O~ 8 D

Take 65 marbles and place them in the slots of a roulette wheel that has been
“unrolled”, so that the slots are in a straight line rather that a circle. The slots are
numbered from O to 64, and each marble is placed contiguously in its designated
slot. Now remove marble #0 from its slot, and shift marble #1 to its place, then
continue the process up the line until all the remaining marbles have been shifted
down one slot. Now place the marble from slot #0 into slot number 64 and you
have a —1 shifted marble train. This is the type of shift that is necessary to
achieve forward and reverse wave closure at the Index 1 and Index 64 endpoints,
shown in the next figure, by using line segments instead of marbles.

Production of Simple Bi-directional Wave from Simple Forward Wave (FOD)
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Figure 2c

This final step, the -1 X-shift, is shown in Fig 2d, where the dotted blue line-plot is the
pre-shifted reverse wave position, and the solid blue line-plot is the —1 x-shifted reverse
wave position. The larger plot at the top shows the shift operation for the overall wave
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pair, whereas the two smaller plots at the bottom of Fig. 2d are magnifications showing
the closure process at the beginning and end sections of the wave pair. The mathematics
for this operation can be expressed as a two step process as follows:

For 0< x < 64 f(xg) = f(x+1) [7]

Where f (65 is defined: f(65 = (0 8]

such that:  f(Xg) is the y value of the -1 x-shifted wave at x
and: f(x+1) is the y value of the pre-shifted reverse wave at x+1

There are two features of Fig. 2d that should be noted here. First notice that in the
small graphs at the bottom, closure between the forward and reverse waves occurs at
four transition axis points (excluding zero). These points are x =1, x = 62, x =63, and x =
64, so that wave closure occurs at one initial point (x = 1) and three terminal points.
Point zero 1s excluded since it 1s simply a “wrap”, or duplicate, of point 64 and will
eventually be discarded. Secondly, the two smaller graphs at the bottom of Fig. 2d show
the process of endpoint shift, or transferring the “marble/line segment” that was initially
in slot 0 into the vacated end slot 64. The green arrow line runs from line segment 1 in
the graph at the left, to line segment 64 in the graph at the right, and shows that
segment 1 is being transferred to segment 64 as the —1 x-shift is performed. The figure
shows that this is not a simple translation operation as in the previous two steps, but a
definite shift — much like the operation of a shift register in digital electronics. Note that
if a simple —x translation were performed, line segment 1 would be translated into the
negative x domain to the left of the y-axis, and there would be no line segment 64.

With the performance of the —1 x-shift operation, the production of the Simple Bi-
directional Wave is now complete. We have thus created a forward and reverse flowing
waveform, which is closed at either end, something like nodes on a standing wave.
Although this is the correct procedural process for generating the reverse wave from the
forward wave, and for producing endpoint closure, the relationship between forward and
reverse waves can be expressed simply by the following equations:

For 0<sx< 64 f(%)=9- f(63-% [9]
Where f(-1) is defined: f(-)=1(69 [10]

and where: f (X ) is the y value of the reverse wave at x
f (63— X) is the y value of the forward wave at (63 — x)



Production of Simple Bidirectional Wave from Simple Forward Wave (FOD)
Using a -1 Shifted Reverse Wave Closure - Step 4: Reverse Wave Shift
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Equations [9] and [10] are good examples of mathematics that do the job, but fail to give
one a visual image or sense of what is really going on in the process. This type of math is
actually quite useful, nonetheless, for computer generation of the reverse wave number
set.

We have thus created a simple bi-directional waveform, having the properties of directed
flow and endpoint closure, and which can be characterized as a piecewise linear function
— a function we have yet to define over its non-integer domain. That will be our next
step in the formalized development of the TimeWave data set.

Vector Expression of the Piecewise Linear Function

The Simple Bi-directional Wave, as described thus far, is fundamentally a collection of
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[x, ¥] integer data points, that are generated by the FOD number set and the
performance of several subsequent mathematical operations. By connecting these points
with straight line segments we are inferring that some piecewise linear process is
responsible for filling in the gaps between integers, creating a continuous function over
the domain defined by these endpoint integers. However, we have yet to define such a
function mathematically - a necessary process if we are to correctly expand the Simple
Bi-directional Wave into the Tri-Level Complex Wave, or 384 number data set.

Fig. 3 shows the Simple Bi-directional Wave in its final form. The forward and reverse
waves are properly superimposed with the correct endpoint closure, and the data set
Integers are connected with straight-line segments. Note that the primary closures occur
at transition index 1 and index 62, with secondary closures and index 63 and 64. A
primary endpoint closure, in this context, is simply the first endpoint closure point as
seen from within the bi-directional wave envelope (area enclosed by the double
waveform), whereas a secondary endpoint closure point would be all subsequent points of
closure. The notion of primary and secondary wave closure is introduced here because it
will be used later when the trigramatic and hexagramatic waves are generated and then
indexed with the linear wave.

Simple Bidirectional Wave (Forwand and Reverse Wave) with Endpoint Closure
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Although Fig. 3 shows the properly superimposed forward and reverse waves, there is
nothing in the graph that provides this sense of directed flow, except the wave labeling.
Fig. 4 introduces, for the first time, vector representation of the forward and reverse
wave segments, providing a visual image of wave directed flow. This graph shows the
forward and reverse waves engaged a continuously flowing process — forward wave flows
into the reverse wave, and the reverse wave flows back into the forward wave. This
dynamic and continuous cycle is akin to the flow from Yin to Yang, Yang to Yin,
expressed in the well-known Yin-Yang symbol. It is also similar to a process that is
described in quantum theory, as the flow of matter to energy, energy to matter, in a
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continuous and never-ending cycle. Fig. 4 can be then viewed as a continuously flowing
counter-clockwise loop — always in motion, and always changing. So how is this process
to be expressed mathematically so that these principles are preserved, and so they might
be expanded into a form of higher ordered expression? This is where the principles of
vector mathematics can serve the process well.

Simple Bi-directional Wave, Using -1 x-Shifted Reverse Wave Closure
with VectorizedLine Segment Elements
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Figure 4

The graph in Fig. 5 shows the generalized form of forward and reverse wave linear
elements, expressed as vectors 'El(i) for the forward wave segment, and | Y |for the

reverse wave segment. The subscript 1 in this vector notation signifies that this vector is
a first order element (i.e. a linear wave element as opposed to a trigramatic or
hexagramatic element), and the subscript signifies that this segment is the i-th
element of the forward and reverse wave line segment set. The vectors 0A, 0B, 0C, and
0D are construction vectors for | ) |and | > |, whereas vectors 0P and 0Q are variable, or

parametric vectors that map the lines along which Y |and| »¢ |lie.

In this graph, the x-axis values correspond to the FOD transitions, with o being
the i-th FOD transition, and| >< |or| > being the i-th +1 transition, and together
they define the domain of the linear bi-directional wave elements. The y-axis values in

Fig. 5 correspond to the magnitude of the forward and reverse waves, with | > | and | X

being the i-th integer values (at x =1) of the forward and reverse waves respectively. The
values| > |and| S¢ |are the i-th +1 integer values (at x = i+1) of the forward and

reverse waves respectively. These y values define the range of the Simple Bi-directional
Wave, from the forward and reverse wave values:| >« | The subscript i is important
12



here because it establishes the boundary conditions (x domain) within which each line
segment expresses itself. This subscript is associated with the linear wave, and 1s a
function of the independent variable x. Let us define X = {x} as the set of all positive real
numbers in the domain of the TWZ data set,| =& ]and the subscript I as a function
of X:

[ >< ] [11]

Where int() indicates the argument X is rounded down to its integer value.

The vector notation view of Fig. 5, can be viewed as an abstraction for motion or flow.
With this notation we leave the realm of classical geometry, or statics, and enter the
realm of kinematics — the path of a moving point. When sketching a line or a curve with
pencil, for example, the point of the pencil occupies a unique position on the line or curve

Vector Representation of Forward and Reverse Wave
Linear Elements
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Figure 5

at any given instant of time. Then as we move our hand, the position of the pencil point
changes in time and traces the line or curve. This is essentially how vector mathematics
serves the foundation and spirit of the 384 number data set development. Similarly, the
Simple Bi-directional Wave describes the path of a moving point, a counter-clockwise
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flow of some entity, be it matter, energy, photon, graviton, novelton, or eschaton. In this
dynamic or kinematics process, we will make use of the notion of the parameter.

The parameter has been described by Anderson? as an independent variable which serves
to determine the coordinates of a point or describe its motion. This is the notion that will
be used here, to establish the vector parametric equation of the straight line in a plane.
Again, according to Anderson? the parametric form tells us where the point goes, when it
gets there as well as the curve along which it travels. Before this parameterization is
begun, however, vectors | X |and | > | must first be defined mathematically.

(1) Forward Wave Vector Equations

Referring to Fig. 5, the forward wave vector | X |, for the i-th transition element can be

expressed as directed line segment AB:

> [12]
and the vector 0B is expressed: [ g | [13]
Rearranging equation [13]: | S | [14]

Substituting standard form: _7 [15]
Which reduces to: — [16]

(2) Reverse Wave Vector Equations

The reverse wave vector | > |, for the i-th transition element can be expressed as directed

line segment CD:

>< [17]

and the vector 0D is expressed: [ s} | [18]

Rearranging equation [18]: [ el | [19]

Substituting standard form: — [20]
Which reduces to: n [21]

With the derivation of equation [16] and [21], we have now defined the generalized
forward and reverse wave vectors mathematically. These vector definitions will be used

14



to formulate the vector parametric equations of the generalized line segment, the basis
for the Simple Bi-directional Wave and the wave expansions that follow.

(3) The Linear Bi-directional Wave

The Simple Bi-directional Wave 1s all that we have thus far defined or described; but this
wave forms the basis for the Linear, Trigramatic, and Hexagramatic waves which are all
products of the expansion of this basic building block. The first step in the process of
wave expansion and combination that eventually leads to the 384 number data set is the
generation of the Linear Bi-directional Wave. This wave is produced from the Simple Bi-
directional Wave (SBW) by simple concatenation —i.e. inserting five copies of the SBW
end-to-end with the original, and producing six SBW cycles. According to McKenna, the
Linear Wave is an expression of the six lines that define each I-Ching hexagram - The
SBW then represents one line of the hexagram, and there are six SBW connected end-to-
end to form the Linear Bi-directional Wave (LBW). Fig. 6 is a graph of this expanded
SBW, or Linear Bi-directional Wave (LBW), and shows the concatenation process that
expands the SBW (64 values, excluding zero) into the LBW (384 values, excluding zero).
Although this graph does not show the vector structure of Fig. 4 (to avoid crowding the
graph), it is implied here. The LBW therefore expresses the same process of directed flow
as does the SBW, a counter-clockwise flow of some point entity along the path traced by
the forward and reverse waves in Fig. 6.

Linear Bi-directional Wave - Formed by Expansion of Simple Forward and Reverse Waves
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Figure 6

The concatenation process that produces the LBW can be expressed mathematically as
follows:

For: [ > | | > | [22]
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and for: [ Swe= | I — I [23]

Where: (pronounced lin of i) is the value of the forward or reverse linear wave at
transition point i or at| > |; and| oSwaE® |is the value of the forward or reverse

linear wave at| Sgpeg® | where| < |is the remainder when i is divided by 64.

The Linear Bi-directional Wave (LBW) will now be expressed mathematically, and
expanded into the Trigramatic Bi-directional Wave (TBW), and Hexagramatic Bi-
directional Wave (HBW), using mathematics derived from the vector parametric equation
of the straight line.

Vector Parametric Equations of the Forward and Reverse Line Segments

(1) The Linear Forward Wave Vector

The parameter is introduced by defining the straight line in terms of a point| > | a

vector | X |, and a parameter . Refer to Fig. 5 and locate the vectors 0A, AB, and 0P. We

have already defined vector AB in equation [12] as the forward wave vector| X |(Eqn

[16]), which establishes a direction for our line segment. Vector 0A is in standard
position (tail positioned at the coordinate system origin), so that it is defined by the

position of its head at point| >>& | Vector OP is the variable or moving vector and,

like the moving pencil point, its head traces the path of the straight line that we are
interested in. Let us rename vector 0P as the linear forward wave vector , and since it

is in standard position (tail at the origin so that it is defined by the coordinates of its
head), it is described mathematically by the following expression:

>< [24]

in which | > |are the variable coordinates of the vector head. This vector can also be

expressed as the sum of vectors 0A and the forward wave vector | X | as follows:

— < [25]

Vector 0A in standard position is expressed as| >&

and from equation [16] —
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so that equation [25] can now be expressed as:

with the parameter t having a range: | =< |over the x domain >

Equation [26] can now be solved for X and yr, the general coordinates of the vector , to
determine the parametric equation of the line describing the motion of the forward wave.
Solving for X and yr yields the following parametric equations of the line:

F [27]
p 28]

Solving [27] and [28] for the parameter t we get:

These expressions for the X and y variables in equation [29], are the standard form of the

line equation, and show that the parameter t behaves as an interpolation operator for the

X and y coordinates of the forward wave line segment. Rearranging terms for the
variables in equation [29] leads to the slope y-intercept form of the straight-line equation,
which is a convenient form of expression for the line segment of interest in this
development. The slope y-intercept form of the line is determined by solving [29] for the
variable , which results in the expression:

Define: x and x , so that [29] becomes:

[31]

which 1s the slope y-intercept form of the forward linear wave line segment, where the

slope is x , and the intercept is x . Equation [31] is the

vector-derived expression that is used to generate the linear forward wave over the
domain| oywag® | This forward wave vector generation process is now repeated for

the reverse wave vector.
17



(2) The Linear Reverse Wave Vector

The process for generating the vector parametric equations for the reverse wave segment
1s the same as for the forward segment, but with a vector that has the opposite sense
(opposite flow) of the forward wave vector. Again, refer to Fig. 5 and find vectors 0C, CD,
and 0Q. Vector CD has already been defined in equation [17] as the reverse wave vector,
> | Vector 0Q, like vector 0P, is the moving variable vector (tail is fixed, but head

moves and traces the line of interest) which will trace the path of our reverse wave line
segment. We now rename 0Q as the reverse wave-generating vector and since it is in
standard position it can be expressed as:

> [32]

In which| > | are the variable coordinates for the head of . Expressing | X |as the

sum of 0C and the parameter scaled| > |, we have:

- [33]

Substituting for 0C and | ¢ | we have:

Solving for X and yr yields the following parametric equations of the line:

S
- [36]

Solving for the parameter t we get:

then solving for yr gives us the slope y-intercept form of the linear reverse line segment:
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Define: x and x , so that [38] 1is expressed in

the slope y-intercept form of the linear reverse wave line segment. Notice also that
Axr(i) =-A Xt » an identity that will be exploited later. For the slope y-intercept form

of [38] we substitute the delta ( expressions and collect terms:

Equations [31] and [39] constitute the defining expressions for the linear forward and
reverse waves respectively, and equation [11] provides the correct value for the subscript

1 in equation [39]. These equations can be either expanded into the trigramatic and
hexagramatic bi-directional waves (TBW and HBW) directly, which are then combined to
form complex waves; or they can be first combined into a linear complex wave, then
expanded into the trigramatic and hexagramatic complex waves. Either of these two
procedures will lead to the same final 384 number data set, but the latter is a more
streamlined process that eliminates several operational steps. The complex wave is
defined here, as any wave that is a linear combination of one or more bi-directional
waves, and 1s not expressed in bi-directional form. So now let us continue with the
process of wave combination, beginning with the linear bi-directional (forward and
reverse) wave.

(3) The Linear Complex Wave

Before beginning the mathematical development of the linear complex wave, let us first
establish the procedure for forward and reverse wave combination.

Definition 4:

In order to produce forward and reverse wave endpoint (node) closure at zero (0) value,
the forward and reverse waves must be subtracted from one another to yield zero valued
endpoints for the combined simple wave. In order to maximize the number of positive
values for the resultant combined wave, the forward wave 1s subtracted from the reverse
wave.

The linear complex wave is therefore produced by subtracting equation [31] (the forward
wave line segment), from equation [39] (the reverse wave line segment). The combined
or complex linear wave is thereby expressed as:

. g0

Replacing the expression| glwells | with the right hand sides of equation [39] and
[31], we get:

19



Ay

A Xt

Ay,
} "{ x= [yf(i) - Aif(f)_xi ]} [41]

and combining like terms and rearranging equation [41] gives us:

AY. Ay
X}‘F{[yr(iﬂ)_yf(i)]_ Ax—r(i)x(i+1)]+[A X; [42]

Xt6)
Using the identity shown previously, Axr(i) =-A Xf(i) , equation [42] is reduced to the

= + o= X
Yei(X) {[ X, X+ Yrin X, X (i+1)

Ay Ayy,
AX AX

r(i) f(i)

Yei(X) = {

defining equation for the linear complex wave:

Ay Ay

yCl(X) =37 AXf(-)

]E(X) + [yr(i+1)_yf(i)}+

AY i Xiay DY % [43]
BXqg

Where Yc1(X) is the linear complex wave function and the delta (&) functions defined as:

AY o =V Vi)

Which is the change in the linear reverse wave dependent variable yr over the x domain

Ayf(i) = (yf(i ) ~ Y )

Which is the change in the linear forward wave dependent variable yf over the x domain

AXgy =Xy = %),

Which is the change in the independent variable X over the domain of the linear complex
wave line segment, X; S X< X 41y

i = int(x)
As defined in equation [11]

Substituting the domain endpoints, Xj and X@+1) for the x-variable, equation [43] reduces
to:

@X=X; Ye:¥) =Y~ Yio [44]

@X = X4 Yei(X) = Yiisy ™ Yein [45]
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Which confirms what we observe at the linear wave line segment endpoints, and
validates equation [43]

Expansion of the Linear Complex Wave (LCW)

According to McKenna!0 the Trigramatic wave is an expression of the trigram pair that
form each I-Ching hexagram. Since each hexagram has a pair of trigrams, a Trigramatic
Wave pair is constructed such that the two trigramatic waves are placed end-to-end
(concatenated), and have the domain (x-axis range) of six simple wave cycles. The
Trigramatic wave 1s also viewed as having a value of three times the linear wave, since a
trigram consists of three lines (trigram = 3 x 1 lines). Similarly, the Hexagramatic wave
1s viewed as an expression of the unity of each hexagram, and is constructed so that a
single hexagramatic wave occupies the domain of six simple waves cycles (six lines to a
hexagram), or two trigramatic wave cycles (two trigrams to a hexagram). Additionally,
since the hexagram contains six lines, the hexagramatic wave is seen as six times as
large as the simple wave (hexagram = 6 x 1 lines, and hexagramatic wave = 6 x 1 simple
waves).

This Tri-Level Complex Wave is described as having the same three nested levels of
expression as exhibited by an I-Ching hexagram. The top level is the Hexagramatic
Wave, or hexagram as a whole, which contains the two lower levels, two Trigramatic
Waves and six Simple Wave cycles. The mid level of expression is the Trigramatic Wave,
which contains the six Simple Wave cycles below and is contained by the one
hexagramatic cycle above. The bottom level of expression is the linear wave, having six
simple wave cycles that are contained within two trigramatic wave cycles and one
hexagramatic wave cycle.

If we were to look at the complex wave as analogous to some physical wave, be it
electromagnetic or acoustic, then this tri-level wave structure could be viewed as
harmonic in nature. The hexagramatic wave would then correspond to the wave
fundamental or 1st harmonic, the trigramatic wave would correspond to the second
harmonic (2x the fundamental frequency), and the linear wave would correspond to the
sixth harmonic (6x the fundamental frequency). In the case of the Tri-Level Complex
Wave, however, the harmonic waves are not only frequency multiples, they are also
amplitude multiples of the fundamental, or hexagramatic wave. Although this notion of
wave harmonics may only be an interesting perspective at this point, it may be useful
when examining the wave features of these number sets using Fourier analysis.

The Expansion Process Expressed Graphically

Graphically speaking the Trigramatic Complex Wave is simply a 3x magnification of the
linear complex wave, 1.e. the magnification of the first two of its simple wave cycles. This
3x magnification means that the linear complex wave segments are expanded by a factor
of three, in both the x and y directions. Similarly, the Hexagramatic Complex Wave is a
6x magnification of the linear complex wave, i.e. the magnification of the first of the
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simple wave cycles. Figure 7 is a graphical representation of this process, and shows the
3x and 6x magnification over the first 64 transition index values (64 of 384). The graph
shows one complete linear cycle, one-third of a trigramatic wave cycle, and one-sixth of a
hexagramatic wave cycle.

One significant feature to notice in Fig. 7, is that the linear, trigramatic, and
hexagramatic waves are offset from one another — the first peak of each wave level is not
aligned with its neighbor. Notice also, that this first peak at each wave level (linear, tri,
and hex) occurs at the primary closure point (i.e. the first closure point as observed from
within the envelope of the linear, tri, and hex bi-directional waves). For the linear wave
this closure occurs at index 1, for the trigramatic wave it is at index 3, and for the
hexagramatic wave it occurs at index 6. This is exactly the defining 1-3-6 ratio for
linear, trigramatic, and hexagramatic waves, which this graph illustrates well.

Another feature to notice about Fig. 7 is that this wave offset is due to the fact that
linear wave segment 1 is included in the linear wave number set. Remember that this
first segment (from index O to index 1) is a result of the “wrapping” feature of the simple

Magnified Section of Nondndexed Expansion of Simple Bi-Directional Wave inta Linear, Tri,
and Hex Waves Showing Zero Closure Offset Between the 3 Wave Levels
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Bi-directional wave — transition 64 is wrapped (copied) to transition zero for the simple
wave, or transition 384 is wrapped to zero for the entire linear bi-directional wave.
Therefore, transition number 0 is not the starting point of the wave, but transition 1 is.
Nonetheless, let us mathematically express the linear forward wave expansion, shown in
Fig. 7, as follows:

] [46]
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Or by rearranging terms in [46]:

Likewise for the linear reverse wave:

[49]

X1 X

and rearranging:

This same set of equations, [46] through [49] can be used to expand the linear wave into
the hexagramatic wave shown in Fig. 7, by replacing all number 3’s by 6’s. However,
since the actual starting point for this wave set is at transition 1 and not transition 0,
the proper expansion will look as shown in Fig. 8. In this figure, alignment between
linear, trigramatic, and hexagramatic waves occurs at transition index 1; also a point of
primary closure.

Magnified Section of Indexed Simple Bidirectional Wave Expansion Into Linear, Tri,
and Hex Waves with Zero Closure Alignment Between the 3 Wave Levels
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Fig. 8 also shows this expansion in terms of the linear, tri, and hex bi-directional waves,
in which the linear bi-directional wave is expanded into the trigramatic, and
hexagramatic bi-directional waves. However, these bi-directional waves are eventually
combined to form the complex wave system, as described by equation [43] for the linear
wave case. Since all three bi-directional waves are to be expressed as complex waves,
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several operational steps can be omitted and the process streamlined, by expanding the
linear complex wave directly. Consequently, we will follow a mathematical process that
expands the linear complex wave, described by equation [43], into the tri and hex
complex waves. In the interest of maintaining visual clarity of this process, however,
and of remaining true to the notion of a directed flowing wave cycle at all three levels of
expression, we show the expanded wave system as bi-directional in nature.

Fig. 9 shows the proper expansion of the linear bi-directional wave into the trigramatic
and hexagramatic bi-directional waves, with wave indexing at transition 1. This graph
shows the entire 384 number wave domain, in which a single hexagramatic wave cycle
contains two trigramatic wave cycles and six linear wave cycles. This notion of all three
levels of wave expression being contained, or nested in one level is the actual theoretical
basis for the tri-level wave combination that produces a single Tri-Level Complex Wave —
the data set.

Indexed Expansion of Simple Bidirectional Wave into Linear, Tri, and Hex Waves
Showing Zero Closure Alignment Between the 3 Wave Levels
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Fig. 10 shows the same tri-level bi-directional wave set as Fig. 9, but with the average
value of the linear and trigramatic bi-directional waves aligned with the average value
of the hexagramatic wave. These two figures are mathematically equivalent for this
development, as we shall see.

Fig. 10 is included here because it is the form of the 7Tri-Level Bi-directional Wave that
appears in the TWZ documentation, and it is obvious that it looks different than Fig. 9.
The linear and trigramatic bi-directional waves in Fig. 10 have their average values
aligned to the hexagramatic wave average value, so that they move about a common line
— the hexagramatic average. This graph may look different than Fig. 9, but the fact is
that they are identical mathematically. The reason is that, in order to produce the
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combined complex wave, the forward wave is subtracted from the reverse wave, as
shown in equations [40] through [43]. Since the forward and reverse waves remain

Tri_Level Bidirectional WaveComplex - Hex Average y -Alignment
and ZeroClosure, Tri_Level x- Alignment
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closed, or connected at their endpoints, it doesn’t matter where along the y-axis they are
shifted — the resulting difference is the same. Consequently, Fig. 9 is equivalent to Fig.
10, and the graphs appearing in the TWZ documentation.

So let us now begin with the mathematical expansion of the Linear Complex Wave, of

equation [43], into the Trigramatic and Hexagramatic Complex Waves, and then finally
into the Tri-Level Complex Wave — the 384 number data set.

The Mathematics of the Trigramatic and Hexagramatic Complex Waves

(1) The Trigramatic Complex Wave

Close inspection of Figs 8 and 9 reveals the relationship between the functions
describing the linear, trigramatic, and hexagramatic waves. The relationship between
linear and trigramatic forward waves is shown in Figs 8 and 9, and is expressed

mathematically as follows:
YEa(3%=2)= 3y g (X) [50]

Where the quantity within the parentheses is the argument for y( ), and not a
multiplier. Rearranging terms in [50] we get:
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X+ 2

Yes(X) = 3y Fl(T [61]

Where Y5(X) is the value of the ¢rigramatic forward wave at x, and 3yF1(&32) is three

. . X+ 2 . . . .
times the value of the linear forward wave at (T) . Likewise, the trigramatic reverse

wave is expressed in terms of the linear reverse wave by the equation:

yR3(3 X=2)= 3Yg1(X) [52]
and by rearranging terms we get:
_ X+2
Yra(X) =3y Rl(—3 [53]

The trigramatic complex wave is defined in the same manner as the linear complex
wave, with the tri forward wave subtracted from the tri reverse wave as in equation [40]
and expressed in trigramatic terms by:

ycs(x) =Yy Rs(x) -y F:;(X) [54]

Using [50], [62], and [54] we can express the trigramatic complex wave in terms of the
linear complex wave as follows:

Yr3(BX=2) =Y g3(3%= 2)= I g1 (X)~ ¥ g1 (X) [55]
or equivalently: Yc3(3X=2) =3y g4(X) = 3y (X) [56]
Factoring the right side of [56} gives:  Yc3(3X—2) = 3{Y ry(X) =Y (X)} [57]

Substituting the expression for the linear complex wave on the right hand side of
equation [40], into [57]:

Yca(3%=2)=3[lin(x)] [58]
then rearranging [58] we get: Y ,(X) = 3[Iin(XL32)] [59]

Equation [59] shows that the value of the trigramatic complex wave at x, is equal to
three times the value of the linear complex wave at [(x+ 2)/ 3]. Replacing the x-term

term in the lin(X) expression of equation [43] with the expression [(X+ 2)/ 3], then

substituting into [59] gives us the defining equation of the trigramatic complex wave as
follows:
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Ay, tAYy,
AXgg

AY Xyt A5 %
AX )

— ) _ xX+2
YealX) = q 3 } +
In this expression the subscript I is expressed as a function of X, using the process

similar to that which produced equation [11]. In this case, since the X term has become
[(X+ 2)/ 3] , the expression defining the bounding subscript i then becomes:

] + (yr(i )~ Y )t [60]

| =int{(x+2)/3} = j [61]

Where subscript i is renamed as j to distinguish it from the linear wave expression

subscript shown in the previous linear wave equations. Equation [61] defines subscript j
as the rounded down integer value of the function (X+2)/3, thus establishing the

boundary conditions for the trigramatic line segment mapped by this function.

Equation [60] expresses the Trigramatic Complex Wave (TCW) as an expansion of the
Linear Complex Wave (LCW) directly. However, the same result would be obtained if the
linear forward and reverse waves had been expanded into the trigramatic forward and
reverse waves, and those results combined to for the trigramatic complex wave. This
direct approach clearly eliminates two very detailed mathematical steps. The same
series of steps will now be used to find the expression for the hexagramatic complex
wave.

(2) The Hexagramatic Complex Wave

As for the trigramatic wave, inspection of Figs. 8 and 9 reveals that the relationship
between the linear forward wave and the hexagramatic forward wave can be expressed:

Yrs(6X—9 = 6y (4(X) [62]

Rearranging terms for this function we get:

X+5
Yes() =6Yei( ") [63]
Where Yg(X) is the value of the hexagramatic forward wave at x, and 6y, {(x+5)/6} is

six times the value of the linear forward wave at {(x+ 5) / 6} . Likewise, the hexagramatic

reverse wave is expressed in terms of the linear reverse wave by the equation:
Yre(6X=9 = 6YR,(X) [64]

and by rearranging terms we get:
X+5

Yre(X) = 6yR1(T [65]
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The hexagramatic complex wave is defined in the same manner as the linear and
trigramatic complex waves, with the hex forward wave subtracted from the hex reverse
wave as in equation [40] and [54], and expressed in hexagramatic terms by:

Yes(X) =Y re(X) —Y r6(X) [66]

Using [62], [64], and [66] we can express the hexagramatic complex wave in terms of the
linear complex wave as follows:

YRre(6X=9) Y a(6X= 9 = 6y gy(X) = 6/ £((X) [67]
or equivalently: Ycs(6X—5) = 6Y r1(X) = 6y 4(X) [68]
Factoring the right side of [68] gives:  Y6(6X=5) = €Y r1(X) =Y £1(X)} [69]

Substituting the expression for the linear complex wave on the right hand side of
equation [40], into [69]:

Yce(6Xx=9 = lin(x)} [70]
. . (X+5
then rearranging [70] we get: Yes(X) = 6{ lin (T)} [71]

Equation [71] shows that the value of the hexagramatic complex wave at x, is equal to six
times the value of the linear complex wave at {(x+5)/6}. Replacing the x-term term in

the y,(X) expression of equation [43] with the expression {(x+ 5)/ 6} , then substituting

into [71] gives us the defining equation of the hexagramatic complex wave as follows:
X+5 +
6

In this expression the subscript i is expressed as a function of x, using the process

Ayt AYy,
A Xt

AY i Xy T AYiq %
A Xto)

Yee(X) =61~

] + (yr(i +1) ~ Yri) )t [72]

similar to that which produced equations [11] and [61]. In this case, since the x term has
become [(X +5)/ 6] , the expression defining the bounding subscript ¢ then becomes:

| =int{(x+5)/6} = k [73]

Where subscript i is renamed as & to distinguish it from the linear and trigramatic wave
expression subscripts shown in the defining wave equations. Equation [73] defines

subscript k as the rounded down integer value of the function (X+5)/6, thus establishing
the boundary conditions for the hexagramatic line segment mapped by this function.
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As with the Trigramatic Complex Wave (TCW) expressed in [60], equation [72] expresses
the Hexagramatic Complex Wave (HCW) as an expansion of the Linear Complex Wave
(LCW) directly. Similarly, the same result would be obtained if the linear forward and
reverse waves had been expanded into the hexagramatic forward and reverse waves, and
those results combined to form the hexagramatic complex wave. With the linear [43],
trigramatic [60], and hexagramatic [72] complex waves now defined mathematically and
expressed graphically, we are now in a position to combine them to form the Tri-Level
Complex Wave, or 384 number “data set”.

(3) The Combined Tri-Level Complex Wave

Now that the three levels of TimeWave expression have been described and defined
mathematically, we are now in a position to integrate these three levels into a single
unitary system of expression. The Tri-Level Complex Wave is seen as an integrated
whole, and analogous to the I-Ching hexagram that functions as a holistic entity, but
contains the individual expression of hexagram, trigram, and line (yin or yang). In order
to establish this tri-level expression mathematically, we combine the complex waves of
the linear, trigramatic, and hexagramatic levels of expression. The general equation
expressing the summation of the three wave levels is written as follows:

y+(X) =lin(x) +tri(x) +hex(x) [74]

Substitutions in [74] for lin(x), tri(x), and hex(x) from equation [43], [60], and [72] give
us:

Y1 (X) =Yci(X) +YcaX) +Y cdX) [75]

and further substitutions from [43], [60], and [72] give us the defining expression for the
Tri-Level Complex Wauve:
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Equation [76] is the defining equation for the Tri-Level Complex Wave. This expression
takes one from the individual elements of the linear complex wave, up to the trigramatic
and hexagramatic complex waves, and finally to the tri-level complex wave. Notice that

the subscripts j for the trigramatic section, and k& for the hexagramatic section of

equation [76] have replaced the subscript I in equations [60] and [72], as they have been
defined in equations [61] and [73]. We now have a complete and well-defined function
for our Tri-Level Complex Wave, or data set.

Equation [76] produces a tri-level wave number set that contains some negative values.
The 384 number data set, on the other hand, is the set of positive real numbers in the
domain 0< x< 384. This means that part of the “raw” data set produced by equation
[76] lies outside the y-value domain that is thought to be the proper expression of this
waveform. One procedure that is widely used for converting negative values of some
arbitrary waveform, into positive values, i1s the use of the absolute value operator. If one
views this tri-level complex wave as some kind of information carrying signal, like an
amplitude modulated radio wave, for example, then a valid procedure for processing such
a signal is the application of the absolute value operator. In the rf signal processing
case, the received modulated-carrier waveform is passed through absolute value circuitry
(rectifier) so that the negative values of the wave are converted to positive values. This
actually improves the signal to noise ratio of the carrier envelope, which is the
information carrying modulation signal. This “rectified” signal is then processed by a
detector circuit that extracts the information carrying modulation wave from the carrier
wave. Although the tri-level wave and the radio wave are not strictly analogous, they
appear similar enough to make a plausible argument for the application of the absolute
value operator here. This operation is expressed as:

Yow =ABSy ] [77]

Where: Y\ is the Data Wave that is graphed in Fig. 11, and defined as the absolute

value of the Tri-Level Complex Wave as expressed in equation [73]. This number set is
used as input data for the TimeWave Zero software, which performs an infinite series
expansion that Meyer calls a fractal transform!i, to generate the TimeWave viewed on
the computer screen.

Standard and Revised Data Set Comparisons

With equation [73] and [74], and the graph in Fig. 11, we have completed this formalized
development of the TWZ data set. We are now 1n a position to compare these results
with those of the standard development reported by McKenna and Meyer in the Invisible
Landscape and the TimeExplorer manual, as well as address the issues raised by the
Watkins Objection.

Fig. 12 is a graph of both the standard and revised data sets, and it shows some
remarkable similarities as well as significant differences. One interesting feature of this
graph, is the nature of each wave at its respective endpoints. Recall that the value of the
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wave at x = 0 will be discarded because it is a duplicate or “wrap” of the value at x = 384.
This will not effect the relative values of the two waves at x = 384, because they are both
zero-valued at this endpoint. However, the value of each wave at x = I is not the same,
with the standard wave having a value of 10 while the revised wave value is zero.

Tri_Level Complex Wave, Summed from Combined Linear, Tri, and Hex Waves
and Derived fromSimple Bi-directional Wave with -1 x-shifted Closure

Wave Yalue
=
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Figure 11

Why does this matter, you may ask, since there are many obvious differences between
the two waves — what is the significance of this difference? For the standard wave, it has
been argued that the zero value at the end of the waveform implies some kind of
singularity at the end of the process — or at the end of time. This revised wave is
implying, however, that there may be singularities at both ends of the continuum. This is
Also an argument for a closed system that may be undergoing some kind of cyclic

renewal process — perhaps each cycle expressing ever higher ordered states of complex
form, or Novelty.

There are concepts emerging from the field of quantum cosmology that may describe an
analogous cyclic process. This is theory in which universes are treated like quantum
particles that inhabit a larger, or higher dimensional domain called a multiverse. Michio
Kaku!2, a theoretical physicist and co-founder of string field theory, has described a
process where universes emerge from the zero-point, or vacuum field, go through an
evolutionary process, then perhaps return to the zero-point field at the end of the cycle.
This cycle may then repeat itself, possibly with increased complexity and Novelty. So
could this be similar to the process that the TimeWave and Novelty Theory attempt to

reveal? Perhaps further investigation into the nature of the TimeWave will shed some
light on these questions.
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Comparison of Standard and Revised Tridevel Complex Waves
Showing Common and Divergent Features
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Figure 12

Another significant feature of Fig. 12 is the apparent agreement of the two waves in the
lower frequency domain. Frequency content of any waveform expresses itself as
variations in the rate of change of its value as the wave propagates in some realm, that
could be either a space or time domain, or both. So the slope of a waveform at any given
point, or its general shape, can reveal frequency content (the magnitude and rate of
specific underlying processes). Examination of the wave pair in Fig. 12 shows that there
1s a common lower frequency process occurring for each waveform. The higher frequency
processes appear as relatively shorter duration peaks riding upon the slower process.
The lowest frequency process occurring in these waveforms can be seen by drawing an
imaginary line between the highest of all the peaks as one moves over the domain of the
waveforms. Slightly higher frequency components can be seen by drawing that
imaginary line over the peaks and valleys upon which the sharpest and shortest
duration peaks ride. The graphs do differ in the higher frequency domain as can be seen
by the steeper slopes of the largest standard wave transitions. This could very well be
due to high frequency noise present in the standard data set because of the imbedded
mathematical errors.

The low frequency, or long duration processes, are those that may occur on the scale of
millennia or even billions of years, whereas the higher frequency processes may occur on
the scale of a human lifetime. Could it be that the lowest frequency process is the
signature of some creative principle at work, be it strange attractor, zero-point field, or
eschaton. Could this creative energy, be perturbing the fabric of space-time in such a
way as to trigger the creation and conservation of higher ordered states — something like
the gravitational energy of a passing nearby star triggering the formation of a comets
from the Ort cloud? Is this lowest frequency process then a kind of ground state, upon
which all higher frequency processes express themselves? Perhaps in time these
questions will be answerable, although certainly not today.
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An obvious feature of Fig. 12 that clearly shows in this graph, is the difference in the
average wave value between standard and revised waves. The average wave value for
the standard wave is somewhat greater than the average value of the revised wave. This
difference in average wave value appears to be the result of differences in the higher
frequency components of the wave pair, perhaps due to noise in the standard wave that
1s produced by the mathematical errors that are present. These high frequency
components of the standard wave show up as the steep peaks that rise well above the
peaks in the revised wave. In the Fourier analysis that follows, these large peaks appear
as high frequency noise that adds randomness to the wave. The impact of this difference
on the final TimeWave, is to shift the average level of novelty upward (lower values)
from that expressed by the standard wave. In other words, the revised wave expresses a
process with somewhat higher levels of novelty, than does the standard wave. Since
Novelty isn’t a calibrated process, it’s not possible to determine what the more
“reasonable” level of Novelty would be. All that can be expressed then, is relative
Novelty.

One final feature of Fig. 12 that requires some discussion, is the correlation number at
the top of the graph. In order to determine and quantify the degree of interdependence,
or inter-relatedness of the standard and revised waveforms, a mathematical operation
called correlation was performed with these two number sets. The number at the top of
the graph is the result of that analysis — a value of 0.564. A correlation of 1.0 would
mean that the waveforms are identical, whereas a correlation of zero would indicate no
functional relationship between the two. Additionally, a correlation of —1 would indicate
that the waveforms were mirror images of one another — a peak reflected by a trough etc.
In this case a correlation of 0.564 indicates that these two waveforms show a significant
level of interdependence, although far from identical. This level of correlation could be
considered likely for two number sets that share a common origin, as well as sharing
many of the same developmental procedures.

Data Wave and Random Number Set Comparisons

One method for assessing the information carrying potential of the Data Wave, and
convincing oneself that it is not a random process, is to compare it with a data set that
has been randomly generated. Several such random wave sets were consequently
produced to be compared with the revised and standard Data Wave number sets directly,
and to also use as input to the TWZ software to generate random seeded TimeWaves.
Fig. 13 1s a graph of the revised Data Wave with a random wave set overlay, and it
clearly shows that these number sets bear little resemblance to one another. Correlation
analysis of the two sets shows a correlation of 0.03, or essentially un-correlated as one
would expect for any random number set. Fig. 13 also appears to show that the revised
Data Wave is a very different type of number set from the random wave set, and it
appears to showing some kind of information carrying process. Is this in fact the case, or
does it just appear that way?

Examination of the power spectra for the data and random waves shown in Figs. 12 and
13 can reveal something about the nature of these three waveforms and their
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relationship. The conversion of time, or space domain waveforms into frequency domain
waveforms (frequency spectrum or power spectrum) is performed using a mathematical
operation called a Fourier transform. With this method, a frequency spectrum can be
produced, which can tell us how much power is contained in each of the frequency
components (harmonics) of a given waveform, and thereby providing the frequency
distribution of the wave power. This distribution would typically be different for
information carrying waveforms than for random, or noise signals. The random, or noise
signal spectrum is typically flat over the signal bandwidth, and often distinguishable
from an information carrying signal spectrum that exhibits 1/ f (f = frequency) behavior.

Comparison of Revised TridLevel Complex Wave Data Set
withRandomly Generated Data Set
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Figure 13

Fourier transform operations were performed on the data sets shown in Figs. 12 and 13,
with the results shown in Fig. 14. The top graph of Fig. 14 includes plots for the
standard and revised Data Wave power spectra, while the bottom graph displays the
Random Wave power spectrum. The colored lines drawn through each of the spectra are
power function curve-fits, that show the frequency roll-off characteristics of each wave.
Notice that the two power spectra in the top graph exhibit frequency roll-off (power level
decreases with increasing frequency), whereas the lower graph power spectrum exhibits
a flat frequency response (power level is frequency independent). This frequency roll-off
is characteristic of information carrying signals, whereas the flat response is
characteristic of noise or random signals.

The revised data wave spectrum, shown in the top graph in green, is exhibiting the
nearly perfect 1/ f frequency response that is typical for an information carrying

waveform. On the other hand, the standard data wave power spectrum shown in blue,
exhibits frequency roll-off, but with a flatter response that is not 1/f . In fact, the flatter
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frequency response of the standard data wave is the likely result of high frequency noise
that increases the power at the tail end of the spectrum and prevents a steeper roll-off.
This is something that should be expected from the distorted standard data wave with
1mbedded mathematical errors, which would tend to add randomness to the wave. The
signature of such randomness can be seen in the Random Wave power spectrum, shown
in the lower graph in red. This plot shows the typically flat frequency response of a
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random, or noise signal with no information content. Apparently, the graphs in Fig. 14
are showing that the standard and revised data waves are definite information carrying
waveforms, but that the distorted standard data wave has imbedded high frequency
noise that flattens its response. This is essentially what Figs. 12 and 13 are showing as
well.

Standard, Revised, and Random Generated TimeWave Results

(1) The TimeWave Zero Screen Set Comparisons

Once the Data Wave, or 384 number data set has been generated, it becomes the input
data for the TimeWave Zero software package. As mentioned previously, the software
performs what has been called a fractal transform, or expansion of the 384 data number
set to produce the TimeWave viewed on the computer screen as a graph of Novelty. In
order for this fractal expansion to be performed properly, the software requires that the
384 number data set shown in Fig. 10 be reversed, such that data point 384 becomes
data point 1 and data point O is discarded (since it’s a duplicate or wrap of data point
384).
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Three separate data sets were used in order to generate the TimeWaves needed for
comparison — the standard data set, the revised data set, and a random data set. The
results of some of these TimeWave comparisons will be shown in the graphs that follow,
beginning with the default TimeWave graphs that are included with the TimeExplorer
software as pre-computed waveforms.

Figs. 15a and 15b show the TimeWave that is stored by the software as Screen 1, and it
covers the period between 1942 and 2012. Fig. 15a shows both the TimeWave resulting
from the standard data set on the left, and that for the revised data set on the right. On
the other hand, Fig. 15b is the TimeWave generated by the random data set, and it
clearly bears little resemblance to the graphs of Fig. 15a.

This is the TimeWave graph that McKenna has called “history’s fractal mountain”,
because of its mountain-like shape. There are several features to notice here, with the
first being that these two plots have remarkably similar shapes — obviously not identical,
but there is clearly a common dominant process at work. Another common feature of
significance shown in these two graphs, is that the major decent into Novelty (peak of the
mountain) begins sometime in 1967. Finally, as mentioned earlier, the TimeWave
produced by the revised Data Wave number set, shows a higher average level of Novelty
for this time period (lower values), than does the TimeWave produced by the standard
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Figure 15b

data set. This Novelty difference is the likely result of the standard wave distortion,
caused by the imbedded mathematical errors that produce significant high frequency
noise in the wave. As shown in Fig. 14, the high frequency components of the revised
data wave are lower than the standard wave by an order of magnitude.

Fig. 16a shows the standard and revised TimeWave graphs for Screen 4 of the TWZ
display. Again, these two plots are quite similar in terms of their appearance, and seem
to be showing evidence of some common underlying process. The differences may be due
to the fact that the standard number set produces more high frequency noise because of
the imbedded errors in the number set. The correlation between these two graphs was
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Figure 16a

found to be 0.731, not as high as Screen 1, but still a significant correlation nonetheless.
On the other hand, the random data set TimeWave shown in Fig. 16b, shows very little
correlation with either of the graphs in Fig. 16a. This is expected, since random number
sets are by definition, un-correlated with any other number set.

A complete set of comparisons like those shown in Figs. 15 and 16 were performed on all
the TimeWave Zero screen sets (Screens 1-10) with very similar results. The correlation
results for the TWZ Screen set comparisons ranged from a low of 0.73 to a high of 0.98
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with an average correlation of 0.86, showing that the standard and revised TimeWaves
in this screen set were remarkably similar. This was not the case for other TimeWaves
that were examined, which will be shown later. In other cases of TimeWave comparison,
the differences between the standard and revised waves, appears to show that the
revised TimeWauve expresses a Novelty process having better alignment with known
historical process — something one would expect from a more precise formalization
process. More analysis is certainly in order, but the data thus far seems to make that
case.
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(2) Comparisons for Other Significant Historical Periods

Several other TimeWave periods having historical significance were examined for
comparison, but the two reported here are the periods from 1895-1925, and from 1935-
1955. The first period includes major advances in physics and technology, as well as a
world war; and the second period includes the development and use of nuclear weapons,
as well as two major wars. Fig. 17 is a graph of the TimeWave comparison for the 1895-

39



1925 period, and again these plots are remarkably similar in form. Several significant

dates are marked with green and red arrows to signify

and Habitual phenomena.

The first powered flight happens at Kittyhawk on December 17, 1903; followed by
Einstein’s Special Theory of Relativity (STR) on June 30, 1905; General Relativity in
1915, and the World War I period of 1914-1918. The events that would be considered
novel (manned flight and breakthroughs in physics) all occur at Novelty troughs or
Novelty descents. The Habitual phenomenon (war), on the other hand, appears to drive
what seems to be a very novel period, back into habit. When both novel and habitual
phenomenon are occurring simultaneously, they both influence the shape of the
TimeWave. WWI may have driven the wave further into habit than it did, if it weren’t
for the simultaneous occurrence of very novel phenomena. For example, the work on the
General Theory of Relativity occurs in the midst of World War I with its “same ‘OLE”
habitual nature. The more novel process of a significant advancement in scientific
knowledge, actually appears to suppress what would be a major ascent into habit, and
actually driving the wave into novelty troughs.
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Notice that the standard TimeWave on the left doesn’t show the regression into habit
during the First World War — the revised TimeWave clearly does. This is one case in
which the revised TimeWave appears to provide a better description of the Novelty
process than does the standard TimeWave. However, this is something that should be
expected for a process with a more precise and consistent mathematical model.
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Fig. 18 shows the 1915 time period, for which the two waves exhibit a substantial
disagreement. With the exception of a brief two-month period, the standard TimeWave
shows a steady descent into Novelty. The revised TimeWave, however, shows more of
what one might expect for a planet embroiled in global conflict. Additionally, the revised
TimeWave shows several instances where the determined march into habit is either
slowed or temporarily reversed; and with the publication of the general theory in early
1916, the level of Novelty becomes too great for the forces of habit, and the wave plunges.
This figure provides a good example of how the standard and revised TimeWaves can
exhibit behavioral divergence, and how this divergence tends to affirm the improved
accuracy of the revised waveform. Let us now take a look at another period that most of
us are familiar with — the period that includes World War II, nuclear energy
development, and the Korean War.
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Figure 18

Figure 19 shows the standard and revised TimeWave comparison graphs for the period
1935-1955, and there are obvious similarities and clear differences between the two
waves. Both graphs show that WWII begins and ends during steep ascents into habit,
but they describe somewhat diverging processes, for much of the middle period of the
war. The revised TimeWave shows that a very novel process is apparently at work for
much of the period of the war. The standard TimeWave does show novel influences, but
1t 1s neither as consistent nor dramatic as for the revised TimeWave. Some very potent
novel process seems to be occurring during much of the war period, and that process may
be suppressing a major ascent into habit that might otherwise be happening. Could this
novel process be the development of nuclear science and technology, eventually leading
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to the production and use of nuclear weapons? That may be an offensive notion, but let’s
take a closer look at it.

The development of nuclear science is really about becoming more aware and
knowledgeable of a process that powers the sun and the stars — more aware of just how a
very powerful aspect of nature works. What one then does with such knowledge is a
different process entirely — and largely a matter of consciousness and maturity. As we
can see from the revised TimeWave graph, the moment that this knowledge is converted
to weapons technology — the nuclear explosion at Trinity Site in New Mexico — the wave
begins a steep ascent into habit.

The use of this awesome power against other human beings in Hiroshima and Nagasaki
occurs shortly after the test at Trinity Site, and occurs on a very steep ascending slope of
habit. Perhaps the process of becoming more aware of nature, and ourselves — is very
novel indeed. It is the sacred knowledge of the shaman, who returns from an immersion
into an aspect of nature, with guidance or healing for her or his people. We seem to have
lost the sense of sacred knowledge with its accompanying responsibility, somewhere
along the way. Perhaps it is time to regain that sense, and reclaim responsibility for our
knowing.
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Figure 19

The revised TimeWave of Fig. 19 also shows the period of the Korean war as a very steep
ascent into habit, although something occurring early in 1952 did momentarily reverse
the habitual trend.
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Correlation Data and TimeWave Comparisons

Correlation analysis was performed for all the data sets compared in this report, as well
as the remaining eight TWZ screen sets not shown here, and selected time periods. This
type of analysis allows us to examine the relationship between data sets, and estimate
their degree of interdependence — i.e. how similar their information content is. The
results of these analyses are shown graphically in Fig. 20, and they include the ten
TimeWave screens included with the TWZ software, nine selected historical windows,
and the 384 number data sets. In all cases shown, the revised and random data sets are
being correlated (compared) with the standard data set. Since any number set correlated
with itself, has a correlation coefficient of one, the blue line at the top of the graph
represents the standard data self-correlation.

Recall that a correlation of 1 signifies number sets that have identical information
content, a correlation of zero signifies no common information content, and a correlation
of —1 means that the number sets information content exhibit “mirror image” behavior —
wave peaks to wave valleys etc. The green line in the graph shows the degree of
correlation between the revised waveform and the standard waveform, for each of the
separate TimeWaves that were examined. The red line shows the correlation level
between waves generated by the random seeded data sets, and those generated by the
standard data set. The first point of each line, 1s the correlation coefficient for each of the
384 number data sets examined — random, revised, and standard data sets.
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The first feature to notice about the revised and standard data set correlations shown in
Fig. 20, is the fact that the revised 384 number data set shows a correlation with the
standard number set of about 60% - a comparison that is shown in Fig. 12. Thisis a
significant cross-linking of information content, but something that one might expect for
number sets with a common base and very similar developmental procedures. The next
feature of significance is the fact that the correlation between the revised and standard
TimeWauves, for all ten TWZ screen sets, is better than 70% and as high as 98%, showing
a very high level of interdependence. The time periods represented by these ten
TimeWave screens, ranges from 4 years to 36,000 years, which is labeled on the graph.
The duration of these TimeWave periods may have a bearing on the level of correlation,
as we shall see in a moment.

Beginning with the period 1895-1925, the graph shows more scatter in the correlation
between standard and revised data sets, which ranges from about 98% down to 8%, with
one anti-correlation of —95%. Notice that the correlation appears worse for very short
time periods, one to two months or so. One possible explanation is that the very short
time period TimeWaves are generated by a very few data points — in other words a low
wave sampling frequency or rate. A small, and under-sampled input data set would add
a higher level of noise to the wave signal, and consequently produce the higher data
scatter observed. The sampling theorem, from information theory, states that aliasing
(noise generation) begins to occur when the signal sampling rate becomes less than twice
the highest frequency component of the sampled signal. This is certainly something that
may be occurring in the mathematics of TimeWave generation.

Additionally, as mentioned previously, this difference could be the consequence of having
an improved model of the process. It is important to remember through all of this
comparison analysis, that the standard data set is generated by a process with imbedded
flaws - not enough to destroy the information content of the wave signals, but enough to
cause some distortion of that information content. This correlation analysis is
Interesting, primarily because it leaves the standard TimeWauve intact, more or less — but
the important point to remember is that even with low correlation the revised data set
appears to produce a better TimeWauve.

It is probable that the variations we observe in Fig. 20 are the result of both the
distortion of the information content of the 384 number data set, as a result of
mathematical errors, and the low data wave sampling rate that occurs for short duration
TimeWaves (an unexamined but plausible thesis). It is also important to point out here,
that when we do see significant differences in the TimeWaves generated by the standard
and revised data sets, those differences have revealed a revised TimeWave of greater
accuracy. However, it is important that we examine a significant variety of additional
TimeWave periods, to gather more statistics on the functioning of the revised wave; but
the data in hand so far, seem to be suggesting that the mathematical formalization of the
data set generating process, does improve the TimeWave accuracy.

Another significant feature of the revised data correlation plot in Fig. 20 that should be
mentioned here, is the fact that the correlation coefficient for the 1915 period is nearly -
1, signifying an anti-correlation or mirror image relationship between the waves. This is
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the TimeWave comparison that is shown if Fig. 18. If one were to place an imaginary
two-sided mirror between the standard and revised TimeWave graphs, then the
reflection on either side of the mirror would closely resemble the wave that is on the
other side — hence the description of anti-correlation as a mirror image relationship.
Also notice, that a green dotted line marks the average of all the standard/revised wave
correlations at about 70%.

The red line of Fig. 20 shows the correlation of the random number generated waves,
with the standard data set. By definition, the random data sets should show little or no
correlation with either the standard or revised data sets, nor with any other random
number set. In several cases in Fig. 20, this turns out to be true, but there are also
several cases in which the random set correlation is not near zero, as one would expect.
In general, the red line plot of Fig. 20 shows a much lower level of correlation with the
standard number set than does the revised set — as expected. Each data point on the red
line, however, is actually an average of either two, or seven random number set
correlations. In other words, either two or seven random number correlations were
averaged to produce each point on the red line graph. It turns out that most of the
sixteen correlation points produced by averaging only two random sets, have much more
scatter than do the four points produced by averaging seven random set correlations.
The 384 number random data set, and the periods 1895-1925, 1905, and 1915, were all
produced by averaging seven random set correlations. The violet dotted line running
through the random number set correlations, is the average correlation level for all the
random sets shown, and it shows a very low average correlation of about 5%.

It is also possible that the same process proposed for producing the larger correlation
scatter of the revised data set, could be at work for the random data sets —1.e. short
duration time periods with low sampling frequencies, could be causing data scatter due
to noise. If a small number of the 384 data file points are used to generate a short period
TimeWave, then there is a much higher probability of correlation between the random
sets and the TimeWave number sets. Without further investigation, however, this is a
speculative, if plausible thesis.

The graphs of Fig. 20 do show that the standard and revised data sets and their
derivative TimeWaves are remarkably well correlated. In the regions where the
correlation weakens, or breaks down entirely, the revised TimeWave appears to show a
Novelty process that is in closer agreement with known historical process. In addition,
the plots in Fig. 20 may be revealing a process whereby short period TimeWaves produce
sampling noise that weakens the correlation. This data supports the view, that the
information content of the standard TimeWave is somewhat distorted, but not destroyed,;
and suggests that the revised TimeWave and its piecewise linear function is able to
correct this distortion, and provides an improved expression of the Novelty process.

Concluding Remarks

The development of the 384 number data set from the set of First Order of Difference
(FOD) integers has been expressed as a process that is piecewise linear in nature. This
process involves the combination and expansion of straight-line segments, which can be
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expressed mathematically as a piecewise linear function. The standard development has
been described by McKenna and Meyer in the TimeWave Zero documentation and in
other reports. But this process includes a procedural step called the “half twist”, that is
not consistent with the structure of piecewise linear mathematics; and consequently
produces a distortion of the FOD information content. Watkins elaborated on this in
some detail, in his well-documented expose on the nature of the half twist, in which he
described the distortions and inconsistencies involved. He then concluded that this
distortion would render the TimeWave meaningless, as a realistic graphical depiction of
the Novelty process as had been described by McKenna. I maintain that this conclusion
was premature, and apparently incorrect.

The revised development of the 384 number data set includes the use of mathematics that
correctly expresses the piecewise linear development process, and therefore produces an
undistorted expansion of the FOD number set. The TimeWauve that results from this
expansion process, 1s then an accurate reflection of the FOD number set, provided the set
can be described or modeled by a piecewise linear function. The piecewise linear function
described here, may only be an approximation to some more complex function that has
yet to be found. In fact, I would argue that this is quite likely for a phenomenon or
process of this nature, which further study may shed some light on. If we assume that
the revised TimeWauve is a reasonably accurate reflection of the information content of
the FOD number set, then the standard TimeWave should have a degree of accuracy
proportional to its degree of correlation with the revised TimeWave. As we have seen
thus far, these two TimeWaves show an average correlation of about 70%, so that the
standard wave has an average accuracy of about 70% when compared with the revised
wave. However, we have also seen this correlation as high as 98%, or as low as 6%, with
one case of a mirror image or anti-correlation of —0.94.

This work has served to clarify and formalize the process by which the 384 number
TimeWave data set is generated. This has been done by showing that the process is
describable within the framework of piecewise linear mathematics in general, and vector
mathematics in particular. Each step has been delineated and formalized
mathematically, to give the process clarity and continuity. The formalized and revised
data set serves as the foundation of the TimeWave generated by the TimeWave Zero
software, which is viewed as a graphical depiction of a process described by the ebb and
flow of a phenomenon called Novelty. Novelty is thought to be the basis for the creation
and conservation of higher ordered states of complex form in nature and the universe.

The results reported here make no final claims as to the validity of the TimeWave as it 1s
expressed by Novelty Theory, nor does it claim that the current TimeWauve is the best
description of this Novelty process. It does show that the proper mathematical treatment
of the FOD number set, produces a TimeWave that appears to be more consistent with
known historical process. This consistency is general, however, and more work needs to
be done to examine the specific reflections or projections that the TimeWave may be
revealing. If Novelty Theory is a valid hypothesis, reflecting a real phenomenon in
nature, then one would expect that it is verifiable in specific ways.

It has also seemed appropriate to examine some of the steps in this wave development
process in terms of their correspondence with elements of philosophy and science. The
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flow of Yin and Yang energy reflected in the expression of the forward and reverse bi-
directional waves, for example, finds philosophical correspondence in a natural cycle of
life-death-rebirth, or in the process of the shamanic journey — immersion, engagement,
and return. Correspondence can also be found in science, in the fields of cosmology,
astronomy, astrophysics, and quantum physics — the life cycles and motion of heavenly
bodies, quarks, and universes; the harmonic and holographic nature of light and wave
mechanics; and the cyclic transformation of matter to energy, and energy to matter. The
reflection of all natural phenomena and processes over the continuum of existence, from
the smallest scales up to the largest scales, must surely include whatever process is
occurring in the I-Ching as well. The question is, are we are clever and conscious enough
to decipher and express it correctly and appropriately?
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