The Alchemy web site on
History of Islamic Science 4
Based on the book
Introduction to the History of Scienceby George Sarton
(provided with photos and portraits)
Edited and prepared by Prof. Hamed A. Ead

These pages are edited by Prof. Hamed Abdel-reheem Ead, Professor of Chemistry at the Faculty of Science -University of Cairo, Giza, Egypt and director of the Science Heritage Center
Web site:
Back to Islamic Alchemy

The Time of Al-Mas'udi
First Half of Tenth Century

The overwhelming superiority of Muslim culture continued to be felt throughout the tenth century. Indeed, it was felt more strongly than over, not only the foremost men of science were Muslims, but also because cultural influences are essentially cumulative. By the beginning, or at any rate by the middle of the century, the excellence of muslim science was already so well established, even in the West, that each new arabic work benefited to some extent by the prestige pertaining to all. To be sure, other languages, such as Latin, Greek, or Hebrew were also used by scholars, but the works written in those languages contained nothing new, and in the field of science, as in any other, when one ceases to go forward, one already begins to go backward. All the new discoveries and the new thoughts were published in arabic. strangely enough, the language of the Qur'an had thus become the international vehicle of scientific progress.
The development of Muslim culture was fostere in Spain by the eighth Umayyad caliph of the west, Abd al-Rahman II, the advances of Muslim science continued to take place almost extensively in the east.

Muslim Mathematics and Astronomy

Practically all the writings of this period were arabic. Let us consider these Arabic writings first. The mathematical production of this period was less abundant and on whole less brilliant than that of the previous one, but it was, for the first time exclusively Muslim, and there were at least two very distinguished mathematicians, Abu Kamil and Ibrahim ibn Sinan. Ibn al-Adami and Ibn Amajur compiled astronomical tables; the latter was said to be one of the best Muslim observers; he made a number of observations between 885 and 933, being aided by his son Ali and a slave called Moflih. Abu Kamil perfected al-Khwarizmi's algebra; he made a special study of the pentagon and decagon and of the addition and subtraction of radicals; he could determine and construct the two (real) roots of a quadratic equation. Abu Othman translated Book X of Euclid, together with Pappos's commentary upon it. Al-Balkhi and the physician Sinan ibn Thabit wrote various treatises on mathematical, astronomical, and astrological subjects. Al-Hamdani compiled astronomical tables for Yemen, and his great work on archaeology of his country contains much information on the scientific views of the early Arabs. Ibrahim ibn Sinan was primarily a geometer; he wrote commentaries on Apollonios and on Almagest and his determination of the area of a parabola was one of the greatest achievements of Muslim mathematics. Al-Imrani wrote astrological treatise and a commentary on Abu Kamil's algebra.

Muslim Physics and Alchemy

Ibn Wahshiya who will be dealt with more fully below, was primarily an alchemist and an occultist. His works do not seem to have any chemical importance, but they may help to understand alchemical symbolism.

Muslim Medicine

The newer medical ideas were, all of them, published in Arabic, but not necessarily by Muslims. The greatest physician of the age was a Jew, Ishaq al-Isra'ili (Isaac Judaeus). We owe him, for instance, the main mediaeval treatise on urine.
Two of the Muslim mathematicians dealt with above, Abu Othman and Sinan ibn Thabit, became famous as organizers of hospitals; Sinan took pains to raise the scientific standards of the medical profession; Abu Othman translated Galenic writings into Arabic.

Muslim Mathematicians

Mohammed ibnal-Husain ibn Hamid. Flourished at the end of the ninth century or the beginning of the tenth. Muslim astronomer. He compiled astronomical tables which were completed after his death by his pupil al-Qasim ibn Mohammed ibn Hisham al-Madani. They appeared in 920-21 under the title Nazm al-iqd (Arrangement of the Pearl Necklace"), together with a theoretical introduction (lost!).
H. Suter: Mathematiker (44, 1920).

Abul-Qasim Abdallah Ibn Amajur (or Majur?) al-Turki. He originated from Fargana, Turkestan, and flourished c. 885-933. Muslim astronomer. One of the greatest observers among the Muslims. He made many observations between 885 and 933, together with his son Abu-Hasan Ali and emancipated slave of the latter, named Muflih. Father and son are often called Banu Amajur. Some of their observations are recorded by Ibn Yunus. Together they produced many astronomical tables: the Pure (alkhalis), the Girdled (al-Muzannar), the Wonderful (al-badi), tables of Mars according to Persian chronology, etc.
H. Suter: Mathematiker (49, 211, 1900; 165, 1902).

Abu Kamil Shuja ibn Aslam ibn Mohammed ibn Shuja al-hasib al-Misri, i. e., the Egyptian calculator. He originated from Egypt and flourished after al-Khwarizmi, he died c. 850, and before al-Imrani, who died 955. We place him tentatively about the beginning of the tenth century. Mathematician. He perfected al-Khawarizimi's work on algebra. Determination and construction of both roots of quadratic equations. Multiplication and division of algebraic quantities. Addition and subtraction of radicals (corresponding to our formula

(a) + (b) = [ a + b + (2ab) ] ).

Study of the pentagon and decagon (algebraic treatment). His work was largely used by al-Kakhi and Leonardo de Pisa.
H. Suter: Die Mathematiker und Astronomen der Araber (43, 1900; Nachtrage, 164, 1902).

Abu Othman Sa'id ibn Ya'qub al-Dimashqi, (i. e., the Damascene). Flourished at Bagdad under al-Muqtadir, Khalifa from 908 to 932. Muslim physician and mathematician. He translated into Arabic works of Aristotle, Euclid, Galen (on temperaments and on the pulse), and porphyry. His most important translation was that of Book X of Euclid, together with Pappos's commentary on it which is extant only in Arabic. The supervision of hospitals in Bagdad, Mekka, and Medina was intrusted to him in 915.
L. Leclerc: Medicine arabe (vol. 1, 374, 1876. Only a few lines). H. Suter: Die Mathematiker und Astronomen der Araber (49, 211, 1900).

Abu Zaid Ahmed ibn Sahl al-Balkhi. Born in Shamistiyan, province of Balkh, died in 934. Geographer, mathematician. A member of the Imamiya sect; disciple of al-Kindi. Of the many books ascribed to him in the Fihrist, I quote: the excellency of mathematics; on certitude in astrology. His "Figures of the Climates" (Suwar al-aqalim) consisted chiefly of geographical maps.
The "Book of the Creation and History" formerly ascribed to him was really written in 966 by Mutahhar ibn Tahir al-Maqdisi (q. v., next chapter).
M. J. de Goeje: Die Istakhri-Balkhi Frage (Z. d. deutschen morgenl. Ges., vol. 25, 42-58, 1871). H. Suter: Die Mathematiker und Astronomen der Araber (211, 1900).

Abu Ishaq Ibrahim ibn Sinan ibn Thabit ibn Qurra. Born in 908-9, died in 946. Grandson of Thabit ibn Qurra (q. v. second half of ninth century); his father Sinan, who embraced Islam and died in 943, was also a distinguished astronomer and mathematician (see medical section below). Muslim mathematician and astronomer. He wrote commentaries on the first book of "Conics" and on the "Almagest", and many papers on geometrical and astronomical subjects (for example, on sundials). His Quadrature of the parabola was much simpler than that of Archimedes, in fact the simplest ever made before the invention of the integral calculus.
H. Suter: Die Mathematiker und Astronomen der Araber (53, 1900).

Ali ibn Ahmed al-Imrani. Born at Mosul in Upper Mesopotamia; he flourished there and died in 955056. Muslim mathematician and astrologer. He wrote a commentary on Abu Kamil's algebra and various astrological treatises. One of these, on the choosing of (Auspicious) days, was translated by Savasodra at Barcelona in 1131 or 1134 (De electiobus) (q. v. first half of twelfth century).
H. Suter: Mathematiker (56, 1900; 165, 1902).

Muslim Agriculture

Abu Bakr Ahmed (or Mohammed) ibn Ali ibn al-Wahshiya al-Kaldani or al-Nabati. Born in Iraq of a Nabataean family, flourished about the end of the third century H., i. e., before 912. Alchemist. Author of alchemistic and occult writings (quoted in the Fihrist). He wrote c. 904 the so-called "Nabataean agriculture" (Kitab al-falaha al-nabatiya), an alleged translation from ancient Babylonain sources, the purpose of which was to extol the Babylonian-Aramean-Syrian civilization (or more simply the "old" civilization before the hegira) against that of the conquering Arabs. It contains valuable information on agriculture and superstitions.
This forgery became famous because the great Russian orientalist Khvolson was entirely deceived by it. Of course, Ibn Wahshiya was as unable to read the cuneiform texts as the Egyptian Arabs the hieroglyphic.
Fihrist (311-312, 358).

Arabic Medicine

Isaac Judaeus. Isaac Israeli the elder. (Not to be mistaken for the Spanish astronomer Isaac Israeli the younger; q. v., first half of fourteenth century.) Isaac ibn Solomon. Abu Ya'qub Ishaq ibn Sulaiman al-Isra'ili. Born in Egypt; flourished in Qairawan, Tunis, where he died, a centenarian, about the middle of the tenth century (c. 932?). Jewish physician and philosopher. One of the first to direct the attention of the jews to Greek science and philosophy. Physician to the Fatimid caliph "Ubaid Allah al-Mahdi" (909 to 934), he composed at his request many medical writings in Arabic. Translated into Latin in 1087 by Constantine the African, Into Hebrew, and into Spanish, their influence was very great. The main medical writings are: on fevers (Kitab al-Hummayat); the book of simple drugs and nutriments (Kitab al-adwiya al-mufrada wal-aghdhiya; diaetae universales et particulares); on urine (Kitab al-Baul, by far the most elaborate mediaeval treatise on the subject); on deontology, the "Guide of the physician" (lost in Arabic, extant in Hebrew under the title of Manhag (or Musarha-rofe'im). He wrote also a medico-philosophical treatise on the elements (Kitab al-istiqsat), and another on definitions. Isaac was the earliest jewish philosopher (or one of the earliest) to publish a classification of the sciences. This was essentially the Aristotelian one as transmitted and modified by the Muslims.
Wustenfeld: Geschichte der arabischen Aerzte (51-52, 1840).